On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations

نویسندگان

چکیده

We show that the operator \[ T_{K,s_1,s_2}f(z) := \int_{\mathbb{R}^n} A_{K,s_1,s_2}(z_1,z_2) f(z_2)\, dz_2 \] is a Calderon-Zygmund operator. Here for $K \in L^\infty(\mathbb{R}^n \times \mathbb{R}^n)$, and $s,s_1,s_2 (0,1)$ with $s_1+s_2 = 2s$ we have \frac{K(x,y) \left (|x-z_1|^{s_1-n} -|y-z_1|^{s_1-n} \right )\, (|x-z_2|^{s_2-n} -|y-z_2|^{s_2-n}\right )}{|x-y|^{n+2s}}\, dx\, dy. This motivated by recent work Mengesha-Schikorra-Yeepo where it appeared as analogue of Riesz transforms equation (u(x)-u(y))\, (\varphi(x)-\varphi(y))}{|x-y|^{n+2s}}\, dy f[\varphi].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Decomposition of Calderon - Zygmund Operators on Function Spaces

We make use of the Beylkin-Coifman-Rokhlin wavelet decomposition algorithm on the CalderonZygmund kernel to obtain some fine estimates on the operator and prove the T(\) theorem on Besov and Triebel-Lizorkin spaces. This extends previous results of Frazier et at., and Han and Hofmann. 2000 Mathematics subject classification: primary 42B20, 46B30.

متن کامل

A Simple Proof of the Sharp Weighted Estimate for Calderon-zygmund Operators on Homogeneous Spaces

Here we show that Lerner’s method of local mean oscillation gives a simple proof of theA2 conjecture for spaces of homogeneous type: that is, the linear dependence on the A2 norm for weighted L 2 Calderon-Zygmund operator estimates. In the Euclidean case, the result is due to Hytönen, and for geometrically doubling spaces, Nazarov, Rezinikov, and Volberg obtained the linear bound.

متن کامل

A Calderon - Zygmund extension theorem for abstract

It is shown that if the Boyd indices of the rearrangement invariant Banach function space Lρ(R) are strictly between 0 and 1, ρ is an absolutely continuous function norm, Ω is a domain from R satisfying the restricted cone condition, denoting by ω the restriction of ρ to Ω, there exists an extension operator for the abstract Sobolev space W Lω(Ω). This is a generalization to abstract Sobolev sp...

متن کامل

On the Hyponormal Property of Operators

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2021

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2021071